ABSTRACT

In this paper, we experimentally study how geometric parameters of textured superhydrophobic surfaces affect a liquid slip, empowered by a custom-tuned microfabrication procedure that produces regular micro-patterns of posts and grates on an entire 4” wafer with a good size uniformity and no defect. A pitch of the patterns and a gas fraction of the structured surface are independently controlled, and the slip length over each type of patterns is measured using a rheometer system. On both grates and posts, the slip length increases linearly with a pitch but exponentially with a gas fraction. The trend of exponential increase by gas fraction appears more pronounced on posts than on grates. The defect-free surfaces allow the flows to maintain a de-wetted (Cassie) state at much higher pitches and gas fractions than previously possible, permitting flows with the maximum slip effect.

Keywords: superhydrophobic surface, liquid slip, wetting transition, drag reduction

INTRODUCTION

It has been well known that the roughness can modify the wettability between liquid and solid along with the surface chemistry [1,2]. In particular, the superhydrophobic surface, conventionally defined as the surface on which water forms over 150° of contact angle and invariably having a rough surface of hydrophobic material, has been widely investigated for its interesting properties such as water repellency and self-cleaning [3-6].

Recently, another application of superhydrophobic surface was proposed; a large liquid slippage can be induced on superhydrophobic surface due to the composite interface consisting of liquid-solid and liquid-gas [7]. We can quantify the amount of liquid slippage using a slip length, which is defined as the virtual distance along the wall at which the liquid velocity extrapolates to zero. For example, tens of nanometers of slip length were measured on a hydrophobic surface [8]. It has been generally anticipated that a large liquid slippage will offer several advantages in various applications [9]: skin friction reduction [10], flow rate accretion [11,12], and the enhancement of interfacially driven transport such as electrophoresis and diffusion-osmosis [13]. Several experimental [14-20] and numerical [21-28] studies followed to determine the efficacy of superhydrophobic surfaces in increasing the slip length. In particular, recent experimental results demonstrated promising results, reporting hundreds of nanometers to tens of micrometers of slip length on superhydrophobic surfaces with irregular [14,15,17], semi-regular [18,19], and regular [16,20] patterns. However, it is still unclear how a slip length is affected by individual parameters such as a length scale and a gas fraction of the structured surface. For an optimal design of a liquid slipping surface, it is essential to understand the effect of individual parameter. In this study, we experimentally investigated how each of two main parameters – pitch and gas fraction – plays a role in the slip length using two different types of well-defined
microstructures – post and grate. Based on our observation, we could optimize the surface parameters for maximum slip effect.

NOMENCLATURE

δ: slip length, L: pitch, \(\phi_e \): gas fraction

STABILITY OF SUPERHYDROPHOBIC SURFACE

For a superhydrophobic surface to be effective, it should stay in de-wetted state (Fig. 1). The condition for a de-wetted (fakir) state can be explained either using a thermodynamic energy minimization [29-31] or a force balance [32-34] between a liquid pressure and a surface tension. In the thermodynamic approach, it is considered that a wetted (Wenzel) and a de-wetted (Cassie) state are two distinct energy minimum points separated by the energy barrier. When the initial state is a de-wetted state, the state will be transitioned to the wetted state if the external pressure is large enough to overcome the energy barrier. In the force balance approach, the surface tension acting through the perimeter of structures is a restoring force against the liquid pressure. If the liquid pressure is larger than the total sum of surface tension, the superhydrophobic surface loses its stability and is transitioned to the wetted state. We used the latter approach [33] to find the condition for a de-wetted state in this study because of its simplicity.

For posts, the stability condition is given as

\[
P \phi_e \leq -4 \gamma (1 - \phi_e) \cos \theta / D
\]

while the stability condition for grates it is expressed as

\[
P \phi_e \leq -2 \gamma \cos \theta / L
\]

Here, \(P \) is the liquid pressure, \(\gamma \) is the surface tension of a liquid \((72 \times 10^{-3} \text{ N/m for water at } 25 ^\circ \text{C})\), \(\theta \) is the contact angle of a liquid on a flat surface (\(-120^\circ\) for a water droplet on Teflon), and \(D \) is the top diameter of a post. We calculated the sustainable maximum gas fraction as a function of a pitch for a given pressure. The calculation results are summarized in Fig. 2, which shows what has been expected; the trend of a maximum gas fraction decreasing as a pitch and a liquid pressure increasing. More instructively, it clearly illustrates that a post and a grate have different behavior upon any changes in the pitch. For example, for a given pressure, grate patterns allow a high gas fraction at a small pitch, while post patterns are more advantageous in achieving a high gas fraction at a larger pitch.

For grates, the gas fraction can be as close as a unity for grates as far as the pitch is below the threshold for a given pressure (e.g. 250 \(\mu \text{m} \) of pitch for 300 Pa of water pressure). For posts, on the other hand, the gas fraction faces an upper limit regardless of the pitch. We designed superhydrophobic surfaces so that they could always meet the stability condition given in Fig. 2. The liquid pressure during the rheometry test was estimated to be 200-300 Pa.

SLIP MEASUREMENT

In this study, we utilized a commercial rheometer setup (AR 2000, TA Instruments) to measure a torque over the sample. The cone-and-plate geometry was used because it gives
a constant shear rate over the whole test section. The cone has 60mm diameter and 2° cone angle, and 53 µm truncation was maintained between the cone and the sample. De-ionized (DI) water was used as a test liquid, and the temperature was controlled at 25 ± 0.1 °C by a Peltier plate during all the tests. For cone-and-plate geometry shown in Fig. 3, the shear stress is given by [18]

\[
\frac{\partial \tau_{\theta\phi}}{\partial \theta} + 2 \tau_{\theta\phi} \cot \theta = 0 \tag{3}
\]

The boundary condition when there exists a slip velocity at the sample is given by

\[
v_s\left(\frac{\pi}{2}, r\right) = v_s, \quad v_s\left(\frac{\pi}{2} - \theta_0\right) = \Omega r \tag{4}
\]

Here, \(v_s\) is the slip velocity at the sample, \(\theta_0\) is the cone angle and \(\Omega\) is the angular velocity of the cone.

If we calculate the shear stress from the above equation and integrate the shear stress over the entire cone, we can obtain the following relationship between the torque and the slip length.

\[
M = \int_0^R 2\pi r^2 \tau_{\theta\phi} dr
\]

\[
= \frac{2\pi}{3} \frac{\mu \Omega R^3}{\theta_0} \left(1 - \frac{3\delta}{2R\theta_0} + \frac{3\delta^i}{R^2\theta_0^i}\right) - 2\pi \mu \Omega \frac{\delta^i}{\theta_0^i} \ln\left(R\theta_o + \delta\right) \tag{5}
\]

The torque was recorded in the shear rate ranging 90-130s\(^{-1}\) and was converted into the slip length using the above mathematical relationship. It is important to note that the above equation is the exact analytical form, which is extended from the approximated one used in [18]. When the slip length is larger than 50 µm, Taylor approximation used in [18] is not valid any more. In this study, where a large slip length is expected, we calculated the slip length by solving Eq. (5) numerically.

The errors generated from the rheometer test were analyzed for the same configuration before [18,35], and it was revealed that the dominant error resulted from the edge/end effects. The edge/end effects were mostly induced by the wettability on the surface and the amount of filling liquid. In particular, we tested samples with various wettabilities in this study, making a direct comparison among samples difficult. To minimize this error, we controlled the position and curvature of the liquid meniscus by implementing a ring of trench on every sample along the outer boundary of a test section as shown in Fig. 4. This trench anchors the contact line of the meniscus at its sharp top edge, so that the position of the meniscus is not affected by the surface wettability conditions. Then, we controlled the curvature of the meniscus by manually adjusting the liquid volume after the cone is in place. The shape of a free surface (meniscus) was then monitored by a high-speed camera during measurement (Fig. 4 (b)). Any discernible difference in the shape of meniscus among samples was not observed. From the images, we estimated that the deviation in the shearing radius was much less than 0.1 mm (or 7 µm in slip length), validating the accuracy of a rheometer system for the measurement of large slips.

Figure 3 The configuration of the rheometry setup for (a) posts and (b) grates.
Figure 4: The error control by edge/end effects. (a) Cross section of a trench implemented along the outer boundary of a test section. See Fig. 3 for the location of the cross section. (b) Images of a liquid meniscus at the rim taken by a high speed camera for grates with 50 µm of a pitch and the following gas fractions: 0 (flat), 50%, 85%, 95% and 98%.

Figure 5: Process flow for sample fabrication. Most of samples were made using process (a). Only samples with grates over 150 µm pitch were made using process (b).

FABRICATION

For this study, well-defined microstructures (posts or grates) were fabricated on a 60 mm diameter circular area using conventional photolithographic technique. We decided to use microstructures instead of nanostructures since the dimension of structures was more suitable to control in microstructures. By using microstructures instead of nanostructures, the stability against wetting became a major issue. As a model structure, we tested posts and grates, since they facilitated the comparison with other numerical [22-24,27] and experimental [16,20] reports of a liquid slip on the same geometry. For grates, they were designed concentric so that they were parallel to the liquid flow as shown in Fig. 3(b). Although the conventional photolithographic steps were used to fabricate the structures, they needed a modification to make a surface free of defects. The defects on the test surface most likely acted as a wetting initiation point during the rheometer test. Once the wetting started, the wetting propagated everywhere for posts.

For grates, although the wetted area was confined within two adjacent grating lines, the resulting torque was still significantly larger than that without the wetting. Therefore, for all the tests, samples must be defect-free. In addition to the microscope inspection of surfaces during the sample preparation, each sample was visually checked after every flow test run to confirm that there was no wetted area on the surface. Only the data obtained with no wetting over the entire sample surface were accepted as valid ones. In order to engineer near-perfect samples in a Class 1000 cleanroom, we developed a customized photolithographic procedure involving several nonstandard measures. First, the 100 mm silicon wafer was thoroughly cleaned with Piranha solution (H₂SO₄:H₂O₂ = 4:1 in volume), rinsed with DI water, dried by a nitrogen gas, and dehydrated at 150°C on a hot plate.
Then, the wafer was vapor-coated with hexamethyldisilazane (HMDS), which is the adhesion promoter between a photosresist (PR) and a wafer, by placing the wafer inside the glass beaker containing HMDS. Then, the surface of the wafer was inspected by ultraviolet (UV) illumination to ensure that there were no particles residing on the wafer. Once ensured, PR was spin-coated on the wafer. As a customized measure, the photosresist has been filtered through a membrane having 200 nm diameter holes. Using a particle counter, we confirmed that, during the spin-coating process, small particles were entrained onto the wafer by the inward air flow generated by the spinning. To address the particle issue, we isolated the spinner from the surroundings by covering it with a fixture of clean aluminum foil, which not only created a highly clean environment locally but also blocked the inward air flow from the surroundings. As a result, a near perfect PR coating was obtained. Then, PR was soft-baked at 100 ºC, exposed to UV light through a photomask on contact mode, and developed in 1:2 ratio AZ developer and DI water mixture. After the development, PR patterns on the test section (60 mm in diameter) were inspected under a microscope to ensure that there were no missing or broken patterns. After confirming that patterns were defect-free, the wafer was hard-baked at 120 ºC and ready for the etching step.

Most cases, we used deep reactive ion etcher (DRIE) to etch the silicon to the desired depth with the PR as a mask material. However, for samples over 150 µm of a pitch, we needed to etch the depth over 150 µm to make the depth the same as the pitch. In that case, due to the selectivity of PR to silicon in DRIE (1:75), silicon oxide (over two hundreds of the selectivity to silicon) was used as a mask layer instead. Silicon oxide (~500 nm) was thermally grown on silicon wafer and the aforementioned photolithography steps were done on the silicon oxide. Then, PR patterns were transferred into the silicon oxide by etching the silicon oxide with PR mask using the oxide etcher (STS Advanced Oxide Etcher). Then, silicon was etched to the desired depth (over 150 µm) by DRIE using silicon oxide as a mask material. The overall process flow is shown in Fig. 5. Figure 6 shows posts and grates with 50 µm of a pitch that were patterned on silicon wafer. Since the dimension on silicon wafer deviated from the dimension on the photomask during the above steps, we estimated the actual dimension by measuring the dimension at fifteen points along the radial direction using scanning electron microscopy. Most cases, we observed 200-500 nm variation from the target dimension on the photomask. After the fabrication, all the samples were treated to be hydrophobic by spin-coating a 2% Teflon AF® solution. Through SEM inspections in the top corner regions of the posts and grate, the coated Teflon was found negligibly thin (tens of nanometers at best). Therefore, we did not take into account the thickness of Teflon when we calculated the actual dimension of microstructures.

EXPERIMENTAL RESULTS

We investigated the effect of two parameters on a slip – a gas fraction and a pitch. To investigate the effect of a gas fraction on a slip, slip lengths were measured on samples with a fixed pitch of 50 µm but varying gas fractions – target gas fractions of 50, 85, 95, 98, 99, and 99.5% for posts and 50, 85, 95, and 98% for grates. For all the samples, the depth remained the same as the pitch (i.e., 50 µm). The slip lengths over the shear rate ranging 90-130 s⁻¹ were listed in Fig. 7. Please note
Figure 7 The effect of a gas fraction on a slip length for (a) posts and (b) grates with 50 µm pitch.

that the slip lengths stayed nearly constant regardless of the applied shear rate for both posts and grates.

All the slip lengths were collected, and the averages are shown in Fig. 8 along with the theoretical predictions available for posts [27] and grates [22]. The velocity field around grates was analytically solved in [36], and the analytical equation for slip length was derived in [22] is given as

$$\delta = \frac{L}{\pi} \ln(\sec(\phi \frac{\pi}{2}))$$

(6)

For posts, the scaling law was used to develop the equation for a slip length at a high gas fraction limit [27]. This equation is given by

$$\delta = \frac{L}{\pi} \ln(\sec(\phi \frac{\pi}{2})) - 0.44$$

(7)

The coefficients in this equation were obtained through the numerical solutions for posts on a square lattice. On the other hand, the flow direction varies continuously with the underlying lattice in this study, since the rotational flow is imposed on the grid patterns of posts. Therefore, we can expect that there would be a discrepancy between the predicted slip length and the actual slip length resulting from inaccurate coefficients in Eq. (7). Still, it was considered that Eq. (7) could capture the qualitative characteristics of slip length at a high gas fraction.

Overall, the slip length exponentially increased as the gas fraction approached unity (100%), agreeing well with the theory [22,27]. On posts, the slip length increased more rapidly in the high gas fraction range than on grates in accord with the analytical scaling law [27] which predicts more rapid increase of slip length for posts. As stated before, the discrepancy of the experimental data from the theoretical value for posts can be considered due to the rotational flow pattern in the rheometer system. In comparison, the flow stays parallel to the grate patterns, and the discrepancy between the experimental and theoretical values was not significant (less than 3 µm). Please note that the maximum ratio of slip length to pitch reaches about two at 99% gas fraction for posts. From this one can clearly infer that the slip length is not always limited by its lateral length scale as suggested in [19]. Rather, the maximum
The effect of a pitch on slip length for (a) posts and (b) grates.

The maximum slip length in this study was obtained for grates with a pitch of 200 µm and was as large as 185 µm, a giant slip ten times larger than the previously reported maximum value [16,18]. At the pitch of 250 µm, no more increase in slip length was observed. Rather, the slip length at the pitch was lower than that at 200 µm. Also, the slip lengths for both pitches of 200 µm and 250 µm were lower than the theoretical values. We speculate that the liquid is not in purely Cassie state, but in the intermediate state between Cassie and...
Wenzel state, although we could not confirm it by just looking for any visual changes on these two samples before and after the test.

Several studies [33,37] suggested that a liquid can stay in the intermediate state and the penetration depth depends on the liquid pressure and the surface parameters. Moreover, the close relationship between the location and shape of the liquid meniscus and the slip length was recently reported [28,38]. It was shown that the small change in the shape or location of a liquid meniscus can significantly reduce the slip length [28,38] and even lead to a negative slip length [38]. Therefore, we guess that the further increase in the slip length as a pitch became larger was not observed due to the increased penetration depth of the liquid meniscus resulting from the reduced stability to the wetting transition.

CONCLUSION

We have verified how geometric parameters of a superhydrophobic surface affect a slip. The summary of measured slip lengths in this study is listed in Table 1. A slip length was a linear function of pitch for both posts and grates. In accordance with a theory [22], a slip length was an exponential function of gas fraction for grates. For posts, more rapid increase of a slip length with a gas fraction was observed, as predicted by the equation derived by a scaling law [27]. By developing the microfabrication technique for a defect-free sample, we were able to successfully approach the theoretical thermodynamic limits for a de-wetting surface condition and achieved unprecedentedly large slips, up to 185 µm. The results confirmed that a high gas fraction and a large pitch within the thermodynamic boundary of Cassie state are two key surface parameters of superhydrophobic surfaces for a maximized slip effect. It should be noted that the giant slip observed in this report is larger than the length scale of many microfluidic systems and even approaches that of regular (macroscopic) systems. For example, the boundary layer thickness of a liquid flow over a macroscale object is in the order of millimetres [39] so that the maximized slip effect close to 200 µm will have significant effect even for the macroscale applications if the liquid pressure is small enough.

<table>
<thead>
<tr>
<th>Surface pattern</th>
<th>Pitch (µm)</th>
<th>Diameter (post) or line width (grate) (µm)</th>
<th>Gas fraction (%)</th>
<th>Slip length (µm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Target</td>
<td>Actual</td>
<td>Target</td>
<td>Actual</td>
</tr>
<tr>
<td>Post 50</td>
<td>40.0</td>
<td>38.5</td>
<td>50</td>
<td>53.4</td>
</tr>
<tr>
<td>Post 50</td>
<td>22.0</td>
<td>20.8</td>
<td>85</td>
<td>86.4</td>
</tr>
<tr>
<td>Post 50</td>
<td>12.5</td>
<td>10.6</td>
<td>95</td>
<td>96.5</td>
</tr>
<tr>
<td>Post 50</td>
<td>8.0</td>
<td>7.5</td>
<td>98</td>
<td>98.3</td>
</tr>
<tr>
<td>Post 50</td>
<td>5.6</td>
<td>4.7</td>
<td>99</td>
<td>99.3</td>
</tr>
<tr>
<td>Grate 50</td>
<td>4.0</td>
<td>3.3</td>
<td>99.5</td>
<td>99.7</td>
</tr>
<tr>
<td>Grate 50</td>
<td>2.5</td>
<td>2.3</td>
<td>98</td>
<td>98.0</td>
</tr>
<tr>
<td>Grate 60</td>
<td>3.2</td>
<td>3.2</td>
<td>98</td>
<td>98.3</td>
</tr>
<tr>
<td>Grate 20</td>
<td>9.5</td>
<td>8.8</td>
<td>98</td>
<td>98.0</td>
</tr>
<tr>
<td>Grate 100</td>
<td>1.6</td>
<td>1.6</td>
<td>98</td>
<td>98.0</td>
</tr>
<tr>
<td>Grate 150</td>
<td>1.6</td>
<td>1.6</td>
<td>98</td>
<td>98.0</td>
</tr>
<tr>
<td>Grate 200</td>
<td>2.0</td>
<td>1.5</td>
<td>98</td>
<td>98.0</td>
</tr>
<tr>
<td>Grate 250</td>
<td>3.0</td>
<td>3.1</td>
<td>98</td>
<td>98.0</td>
</tr>
</tbody>
</table>

ACKNOWLEDGMENTS

This research has been funded by the National Science Foundation NIRT Grant 0103562 and California NanoSystems Institute (CNSI) Graduate Student Fellowship. The authors thank Professor Pirouz Kavehpour for help with the rheometer experiment.
REFERENCES

